![]() |
.
laatmaar. :o
|
:confused:
|
verwijder je topic maar eens vlug :nono:
|
Ik heb niet de indruk dat deze topic lang open zal blijven. Vandaar dat ik een Sing-along op hoog niveau voorstel!
Ik zal zelf beginnen. :) A ring ding ding ding d-ding baa aramba baa baa barooumba Wh-Wha-Whats going on-on Ding ding Lets do the crazy froogg Ding ding A Brem Brem A ring ding ding ding ding A Ring Ding Ding Dingdemgdemg A ring ding ding ding ding Ring ding Baa-Baa Ring ding ding ding ding A Ring Ding Ding Dingdemgdemg A ring ding ding ding ding a Bram ba am baba weeeeeee BREAK DOWN! Ding ding Br-Br-Break It dum dum dumda dum dum dum dum dumda dum dum dum dum dum dumda dum dum Brem daem dum dum dumda dum dum dum dum dumda dum dum dum dum dum dumda dum dum weeeeeeee A ram da am da am da am da weeeeeaaaaaaaaaaaaaaaa Wh-Whats Going On? ding ding Bem De Dem ding ding da da A ring ding ding ding ding A Ring Ding Ding Dingdemgdemg A ring ding ding ding ding Ring ding Baa-Baa Ring ding ding ding ding A Ring Ding Ding Dingdemgdemg A ring ding ding ding ding a Bram ba am baba.. ding ding Br-Br-Break It dum dum dumda dum dum dum dum dumda dum dum dum dum dum dumda dum dum Brem daem dum dum dumda dum dum dum dum dumda dum dum dum dum dum dumda dum dum ding ding Bem De Dem! |
gefeliciteerd!
|
Citaat:
|
Consider a pedigree P, which is a directed acyclic graph (V(P), E(P)). The vertices V(P) represent individuals and the edges E(P) represent parent-child relationships. Hence the maximum in-degree of any node is 2. We shall talk about the descendents of an individual I as being the set of all individuals reachable from vertex I using a walk of non-zero length, and the ancestors of I as being those individuals for which I is a descendent. Individuals with no ancestors are called founders. There is a Boolean function, available, which is defined on the individuals V(P), to define whether they are available or unavailable. Two individuals, I and J, are ‘unrelated’ if ancestors(I) and ancestors(J) are non-overlapping sets. Problem: find a maximal set of unrelated available individuals in P. Lemma 0: Consider the deletion of a set of individuals S from P such that for every s in S, descendents(s) is a subset of S. Such an operation will not change the relationships (either related or unrelated) of any individuals that remain in the pedigree. We shall call this aclosed, pruning operation. Proof: The relationship between two individuals i and j is defined in terms of the intersection of their ancestor sets. With a closed, pruning operation all descendents are deleted so the ancestor sets of those elements that remain are unaffected. QED.
|
laatmaar
|
Alle tijden zijn GMT +1. Het is nu 14:22. |
Powered by vBulletin® Version 3.8.8
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.