Scholieren.com forum

Scholieren.com forum (https://forum.scholieren.com/index.php)
-   Huiswerkvragen: Exacte vakken (https://forum.scholieren.com/forumdisplay.php?f=17)
-   -   [WI] TI Lissajou, window: Tstep (https://forum.scholieren.com/showthread.php?t=1746691)

Jacquelien 23-03-2009 14:55

TI Lissajou, window: Tstep
 
Bij Wiskunde hebben wij het pas gehad over Lissajou-figuren (bepaalde grafiek).

Nu moet je daarvoor je rekenmachine bij mode i.p.v. op "func" op "par" zetten en dan x1 en y1 invullen..
En dan naar window, en daar zit mijn probleem:

Je moet dan Tmin, Tmax en Tstep invullen.
Wanneer ik op zoomstandaart druk, krijg ik niet de standaart getallen daarvoor.
Mijn grootste probleem is Tstep, die vind ik het belangrijkste en die weet ik niet meer.

Volgens mij moet daar iets met 360 of 36 (weet ik niet zeker) en pi staan.

Weet iemand wat het precieze getal is?

cartman666 23-03-2009 16:06

Tmin en Tmax zijn de minimale, en maximale waarde van T waarvoor de rekenmachine je figuur gaat uitrekenen.
Tstep is de stapgrootte waarmee hij van Tmin naar Tmax gaat. Deze set:
Tmin = 0 Tmax=4 Tstep=0.5
Geeft deze reeks voor T: 0 0.5 1 1.5 2 2.5 3 3.5 4 (ik begin bij Tmin, tel daar steeds Tstep bij op, en stop zodra ik bij Tmax ben)
Als je dan deze functies hebt:x1 = 2t en y1 = t2
Dan gaat hij deze punten met elkaar verbinden:
t=0: (2*0,02) ofwel: (0,0)
t=0.5: (2*0.5, 0.52) ofwel: (1,0.25)
(2,1)
(3,2.25)
(4,4)
(5,6.25)
(6,9)
(7,12.25)
(8,16)
Dat levert dan een figuur op. (in dit geval de functie y=0.25*x2, maar dat doet er niet toe)

Dat is volgens mij wat je aan het doen bent (maar ik ben mijn GR kwijt) en als dat zo is dan kan je stellen dat Tstep meestal (Tmax-Tmin)/100 is. (dan heb je 100 punten in je figuur zitten)

Tstep is verder niet echt belangrijk, en je kan de volgende vuistregel aanhouden: Is je figuur lelijk: neem een kleinere Tstep, kost het je rekenmachine veel tijd om iets te tekenen: neem een grotere Tstep.

cartman666 23-03-2009 16:16

Lissajou-figuren bereken je meestal met goniometrische functies (cosinus, sinus) voor x1 en y1. Bijvoorbeeld x1 = cos(t), y1=cos(2t).
Dan wil je t meestal laten lopen over een bepaald aantal graden, bijvoorbeeld "helemaal rond": 0 tot 360 graden. De stapgrootte kan je dan 1 graad maken, of 10, of 3.6, net hoe nauwkeurig je je figuur getekend wilt hebben.

ILUsion 23-03-2009 18:20

Tstep moet je altijd een beetje mee prutsen: hoe groter die waarde hoe hoekiger de weergave is, hoe kleiner hoe langer hij erover doet om een figuur te tekenen (maar hoe beter je grafiek klopt). Voor Lissajous-figuren laat je inderdaad vaak van 0 tot 360° lopen (0 tot 2 pi) of een veelvoud daarvan (afhankelijk van de verhouding tussen de factoren in je sinusjes (of cosinusjes of allebei)).

Jacquelien 23-03-2009 19:46

Bedankt voor de reacties... mr t is nog niet echt wat ik zocht:

Mijn lerares had het over een standaart Tstep (net als Xmin = -10, Xmax = 10, enz)..
zo is de standaart Tmax = 2π..
Ze had het erover dat we die standaart Tmax en Tstep moesten onthouden..
Maar nu ben ik em vergeten:S ik dacht dat het iets was met 360 en pi...volgens mij delen door elkaar.

(op andere GR's stond btw het getal bij Tstep: 0,13899693899.... (aangezien de GR automatisch van bijv. 5x2, 10 maakt), dat getal zoek ik, maar dan exact)

ILUsion 23-03-2009 20:12

Er is geen echte standaardwaarde voor Tstep (anders zou je hem niet moeten instellen). Het hangt er echt van af hoe goed je alles wilt zien, maar als je bv. 2 * pi / 100 doet, krijg je per omwenteling van je sin(t) 100 stapjes (op je TI is dat eigenlijk al veel te veel in de meeste gevallen, ik zou zeggen dat je met pi/10 zeker toekomt). Natuurlijk ervanuitgaand dat je rekenmachine in radialen staat (anders neem je maar gerust 15°).

De standaardinstelling kan je vast wel gewoon terugzetten door een reset van het RAM-geheugen; die Tstep heeft wiskundig gezien echt geen betekenis (enkel numeriek heeft dat iets van waarde op de nauwkeurigheid van je grafiek).

Je lerares had die waarde waarschijnlijk gezegd om een goede richtwaarde te geven (als je niet weet waarvoor die dient is het namelijk niet te begrijpen hoe je daarvoor een goede waarde neemt). Ik zou je vooral aanraden om er wat mee te spelen: als je de grafiek fijner wilt hebben gewoon kleiner maken, als je te lang moet wachter de waarde wat groter kiezen (als je Tmax - Tmin deelt door Tstep weet je hoe veel berekeningen hij ongeveer moet maken (en hoe meer berekeningen, hoe langer het duurt)).

cartman666 23-03-2009 21:08

Citaat:

Jacquelien schreef: (Bericht 29044663)
(op andere GR's stond btw het getal bij Tstep: 0,13899693899.... (aangezien de GR automatisch van bijv. 5x2, 10 maakt), dat getal zoek ik, maar dan exact)

Dat is Pi/22.6 Beetje gekke waarde. En in mijn ogen heeft je lerares je een onhandige methode aangeleerd.


Alle tijden zijn GMT +1. Het is nu 05:03.

Powered by vBulletin® Version 3.8.8
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.