![]() |
WI (Least Common Denominator; gelijke noemer)
Ik snap echt niks van de LCD, gelijke noemer dus. Ik moet een paar opgaven maken, maar ik kom er niet uit. Ze zullen waarschijnlijk wel heel makkelijk zijn, maar ik doorzie het gewoon niet. Wie kan mij helpen?
Dit zijn de opgaven: Simplify: a) (1/x-2) - (1/x+2) b) (6x + 25/4x +2) - (6x^2 + x - 2/4x^2-1) c) (18b^2/a^2-9b^2) - (a/a + 3b) --> dit nog + 2 d) (1/8ab) - (1/8b(a+2)) + (1/b(a^2-4) e) (2t - t^2)/(t + 2) * (5t/t-2 - 2t/t-2) f) 2 - (a(1-1/2a)/025) |
Die rekenregels snap ik wel, maar ik heb echt geen idee hoe je dit moet oplossen!
|
Ik heb voor de eerste een oplossing, die klopt echter niet. :(
|
a) (1/x-2) - (1/x+2)
als je bedoelt a) 1/(x-2) - 1/(x+2) dan is dit hetzelfde als 1/a-1/b ..het gelijk maken van de noemer geeft b/(ba)-a/(ab)=(b-a)/(ab) in jouw geval ((x+2)-(x-2))/((x-2)(x+2))=4/(x²-4) bij de andere opgaven is het moeilijk te onderscheiden waar het deel teken (/) moet staan en welke getallen horen bij welke haakjes :S:S |
Citaat:
a) (1/x-2) - (1/x+2) Maak van 1/(x-2) (x+2)/[(x-2)(x+2)]=(x+2)/(x²-4) en maak van 1/(x+2) (x-2)/[(x-2)(x+2)]=(x-2)/(x²-4). Dit geeft: 1/(x-2)-1/(x+2)=(x+2)/(x²-4)-(x-2)/(x²-4)=(x+2-x+2)/(x²-4) =4/(x²-4). b) (6x + 25/4x +2) - (6x² + x - 2/4x²-1) Maak van (6*x+25)/(4*x+2) (6*x+25)(4*x²-1)/[(4*x+2)(4*x²-1)] =(24*x3+100*x²-6*x-150)/(16*x3+8*x²-4*x-2) en maak van (6*x²+x-2)/(4*x²-1) (4*x+2)(6*x²+x-2)/[(4*x+2)(4*x²-1)] =(24*x3+16*x²-6*x-4)/(16*x3+8*x²-4*x-2). Dit geeft: (6*x+25)/(4*x+2)-(6*x²+x-2)/(4*x²-1) =(24*x3+100*x²-6*x-150)/(16*x3+8*x²-4*x-2) -(24*x3+16*x²-6*x-4)/(16*x3+8*x²-4*x-2) =(24*x3+100*x²-6*x-150-24*x3-16*x²+6*x+4)/(16*x3+8*x²-4*x-2) =(84*x²-146)/(16*x3+8*x²-4*x-2). De rest van de opgaven laat ik als oefening aan jou over. |
Zoals je het nu gedaan hebt snap ik het wel, maar waarom is het antwoord dan 21/2(2x+1) ?
|
Citaat:
dit doet me denken aan 2*(A³-B³) |
Alle tijden zijn GMT +1. Het is nu 06:05. |
Powered by vBulletin® Version 3.8.8
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.