Registreer FAQ Berichten van vandaag


Ga terug   Scholieren.com forum / School & Studie / Huiswerkvragen: Exacte vakken
Reageren
 
Topictools Zoek in deze topic
Oud 17-06-2012, 22:13
Montauk
Ik snap niet hoe je aan al deze uitkomsten komt. Ik snap zeer weinig van kansrekenen daarom zou ik graag uitleg willen hoe je daar nu net aan komt. Ik ben niet zeker of alle oplossingen ook correct zijn.

Je trekt 2 kaarten uit een boek met 52 speelkaarten.
bereken de kans op volgende gebeurtenissen
A: de getrokken kaarten zijn 2 azen
P(A)= 1/221

B: de getrokken kaarten zijn 2 harten.
P(B)= 1/17

C: de getrokken kaarten zijn een klaveren en een schoppen.
P(c)= 13/102

D: de getrokken kaarten zijn aas en heer van ruiten.
P(D)= 1/1326


Je trekt 4 kaarten uit een boek met 52 speelkaarten.
Bereken de kans op volgende gebeurtenis.
E: de getrokken kaarten zijn 2 azen en twee heren.
P(E)= 36/270725


Bij een loterij worden 500 lootjes verkocht, er zijn 25 prijzen.
Saar heeft 2 lootjes gekocht.
wat is de kans dat saar geen prijs heeft?
saar koopt 2 van 500 lootjes.
het totaal aantal mogelijkheden:
90,24 % 2 uit 500 lootjes

het totaal aantal mogelijkheden om geen prijs te winnen:
0,24% 2 uit 475 lootjes

de kans dat saar geen prijs heeft:
9,76% Formule van Laplace

wat is de kans dat saar 2 prijzen heeft?
Het totaal aantal mogelijkheden om 2 prijzen te winnen:
9,52% 2 uit 25 lootjes

De kans dat saar twee prijzen wint:
/ Formule van Laplace (deze uitkomst heb ik niet)
Met citaat reageren
Advertentie
Oud 17-06-2012, 22:20
Schrödinger
Avatar van Schrödinger
Schrödinger is offline
De eerste zal ik even voordoen. Er zitten vier azen in een pak kaarten. De kans dat de eerste kaart een aas is, is dus 4/52. Vervolgens heb je nog 51 kaarten over, waarvan 3 azen. De kans dat je nu weer een aas pakt is 3/51. De kans dat je twee azen uit een pak kaarten pakt is dus (4/52) * (3/51) = 1/221. Snap je nu de andere vragen ook?
Met citaat reageren
Oud 17-06-2012, 22:47
Montauk
Citaat:
De eerste zal ik even voordoen. Er zitten vier azen in een pak kaarten. De kans dat de eerste kaart een aas is, is dus 4/52. Vervolgens heb je nog 51 kaarten over, waarvan 3 azen. De kans dat je nu weer een aas pakt is 3/51. De kans dat je twee azen uit een pak kaarten pakt is dus (4/52) * (3/51) = 1/221. Snap je nu de andere vragen ook?
Bedankt voor je reactie!
ik kom niet aan 1/221 . Als ik 4/52 maal 3/51 doe kom ik een kommagetal uit en ik heb geen idee hoe je dan aan die 1/221 komt. Kan je dat even uitleggen?

Bij B kom ik uit : 13/52 * 12/51
want er zitten 13 harten in een kaartspel, neem ik aan? :')
C: snap k niet hoe je klaver en schoppen tegelijk de kans daarop kan berekenen. Ik ben een ramp
Met citaat reageren
Oud 17-06-2012, 22:55
Verwijderd
Citaat:
Je trekt 2 kaarten uit een boek met 52 speelkaarten.
bereken de kans op volgende gebeurtenissen
A: de getrokken kaarten zijn 2 azen
P(A)= 1/221
Er zijn 52 speelkaarten, en van elke soort zijn er 4 (schoppen, harten, klaveren en ruiten). Er zijn dus 52/4 = 13 soorten kaarten.

Stel dat je 1 kaart pakt. De kans dat het een aas is, is 4/52 ( = 1/13), aangezien er 4 van de 52 kaarten een aas zijn. Wanneer je de tweede kaart pakt, heb je 3/51 kans, want er is al een aas uit het spel. Je hebt dus de eerste keer 1/13 kans, de tweede keer 3/51. Wat je dan doet is 1/13 * 3/51 = 1/221 kans.

Citaat:
B: de getrokken kaarten zijn 2 harten.
P(B)= 1/17
Eerst heb je 13/52 ( = 1/4) kans, want 13 van de 52 kaarten zijn harten. Daarna zijn er nog 51 kaarten over, waarvan 12 harten zijn: 12/51 kans dus. Nu vermenigvuldig je die getallen weer: 1/4 * 12/51 = 1/17.

Op de vragen die daarna komen, heb je meer kennis nodig. Ik zou even deze pagina doorlezen, die legt de verschillende situaties uit met voorbeelden: http://www.omegajunior.net/wiskunde/...teringentellen



Edit: Om van dat kommagetal naar een breuk te gaan, doe je MATH -> 1: Frac
Met citaat reageren
Oud 17-06-2012, 23:04
Montauk
Citaat:
Er zijn 52 speelkaarten, en van elke soort zijn er 4 (schoppen, harten, klaveren en ruiten). Er zijn dus 52/4 = 13 soorten kaarten.

Stel dat je 1 kaart pakt. De kans dat het een aas is, is 4/52 ( = 1/13), aangezien er 4 van de 52 kaarten een aas zijn. Wanneer je de tweede kaart pakt, heb je 3/51 kans, want er is al een aas uit het spel. Je hebt dus de eerste keer 1/13 kans, de tweede keer 3/51. Wat je dan doet is 1/13 * 3/51 = 1/221 kans.


Eerst heb je 13/52 ( = 1/4) kans, want 13 van de 52 kaarten zijn harten. Daarna zijn er nog 51 kaarten over, waarvan 12 harten zijn: 12/51 kans dus. Nu vermenigvuldig je die getallen weer: 1/4 * 12/51 = 1/17.

Op de vragen die daarna komen, heb je meer kennis nodig. Ik zou even deze pagina doorlezen, die legt de verschillende situaties uit met voorbeelden: http://www.omegajunior.net/wiskunde/...teringentellen



Edit: Om van dat kommagetal naar een breuk te gaan, doe je MATH -> 1: Frac
Ik heb precies geen math staan, ik heb dit rekenmachine http://www.calculatorsinc.com/texasi...eacherkit.aspx kan je dit hier ook mee doen? Bedankt voor de hulp.
Met citaat reageren
Oud 17-06-2012, 23:07
Em.
Avatar van Em.
Em. is offline
Citaat:
Ik heb precies geen math staan, ik heb dit rekenmachine http://www.calculatorsinc.com/texasi...eacherkit.aspx kan je dit hier ook mee doen? Bedankt voor de hulp.
Je hebt de knop nodig waar F *pijlding* D staat, dat is bij jou de tweede van rechts in de tweede rij van boven, oftewel 'boven' het knopje waar PRB op staat.
__________________
(...) en ik hou zo van verlangen en ik hou zo van alleen zijn en ik hou zo van het denken dat het zou kunnen als het kon. - Tjitske Jansen
Met citaat reageren
Oud 17-06-2012, 23:09
Verwijderd
En als dat niet lukt, dan moet je 1 / ANS doen, en wat daar uitkomt is dan de noemer van je breuk (als de teller 1 is).
Met citaat reageren
Oud 17-06-2012, 23:13
Montauk
Citaat:
Je hebt de knop nodig waar F *pijlding* D staat, dat is bij jou de tweede van rechts in de tweede rij van boven, oftewel 'boven' het knopje waar PRB op staat.
ohja dankje ik heb F ->D geklikt en dan komt het er op!
Met citaat reageren
Advertentie
Reageren


Regels voor berichten
Je mag geen nieuwe topics starten
Je mag niet reageren op berichten
Je mag geen bijlagen versturen
Je mag niet je berichten bewerken

BB code is Aan
Smileys zijn Aan
[IMG]-code is Aan
HTML-code is Uit

Spring naar


Alle tijden zijn GMT +1. Het is nu 17:34.