Advertentie | |
|
![]() |
||
Citaat:
a) (1/x-2) - (1/x+2) Maak van 1/(x-2) (x+2)/[(x-2)(x+2)]=(x+2)/(x²-4) en maak van 1/(x+2) (x-2)/[(x-2)(x+2)]=(x-2)/(x²-4). Dit geeft: 1/(x-2)-1/(x+2)=(x+2)/(x²-4)-(x-2)/(x²-4)=(x+2-x+2)/(x²-4) =4/(x²-4). b) (6x + 25/4x +2) - (6x² + x - 2/4x²-1) Maak van (6*x+25)/(4*x+2) (6*x+25)(4*x²-1)/[(4*x+2)(4*x²-1)] =(24*x3+100*x²-6*x-150)/(16*x3+8*x²-4*x-2) en maak van (6*x²+x-2)/(4*x²-1) (4*x+2)(6*x²+x-2)/[(4*x+2)(4*x²-1)] =(24*x3+16*x²-6*x-4)/(16*x3+8*x²-4*x-2). Dit geeft: (6*x+25)/(4*x+2)-(6*x²+x-2)/(4*x²-1) =(24*x3+100*x²-6*x-150)/(16*x3+8*x²-4*x-2) -(24*x3+16*x²-6*x-4)/(16*x3+8*x²-4*x-2) =(24*x3+100*x²-6*x-150-24*x3-16*x²+6*x+4)/(16*x3+8*x²-4*x-2) =(84*x²-146)/(16*x3+8*x²-4*x-2). De rest van de opgaven laat ik als oefening aan jou over.
__________________
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel
Laatst gewijzigd op 10-10-2004 om 18:38. |
![]() |
||
![]() |
Citaat:
dit doet me denken aan 2*(A³-B³) |
Advertentie |
|
![]() |
|
|