Registreer FAQ Berichten van vandaag


Ga terug   Scholieren.com forum / School & Studie / Huiswerkvragen: Exacte vakken
Reageren
 
Topictools Zoek in deze topic
Oud 27-05-2009, 15:21
fcbkevin
fcbkevin is offline
ik weet niet hoe ik hier aan moet beginnen ...

In welk punt van het eerste kwadrant, gelegen op de parabool p <-> y=4-x² zal de raaklijn aan p met de 2 coördinaatassen een driehoek met minimale oppervlakte vormen?
Met citaat reageren
Advertentie
Oud 27-05-2009, 16:50
bram gysel
ik ook nie
Met citaat reageren
Oud 27-05-2009, 17:42
fcbkevin
fcbkevin is offline
Citaat:
ik ook nie
bedant gysèlle xD
Met citaat reageren
Oud 27-05-2009, 17:44
fcbkevin
fcbkevin is offline
Citaat:
bedant gysèlle xD
tis bedankt , foutje, zelfs da lukt nie.
Met citaat reageren
Oud 27-05-2009, 17:46
mathfreak
Avatar van mathfreak
mathfreak is offline
Je weet dat je te maken hebt met de parabool y=4-x². Dit is de grafiek van een tweedegraadsfunctie f, gedefinieerd door f(x)=4-x². Stel de raaklijn aan de grafiek van f gaat door (a,f(a)). Omdat dit punt in het eerste kwadrant moet liggen geldt: a>0 en f(a)>0. Omdat de raaklijn door (a,f(a)) gaat weet je dat f'(a) de richtingscoëfficiënt van de raaklijn is en kun je dus de vergelijking van de raaklijn opstellen. Stel dat deze raaklijn de vergelijking y=mx+n heeft, dan geeft mx+n=0 de waarde voor het snijpunt met de X-as en (0,n) is dan het snijpunt met de Y-as. De raaklijn sluit nu samen met de 2 coördinaatassen een driehoek in. Omdat je weet waar de raaklijn de coördinaatassen snijdt weet je ook wat de afmetingen van de zijden van de driehoek zijn, en kun je dus de oppervlakte van de driehoek berekenen.
__________________
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel
Met citaat reageren
Oud 27-05-2009, 18:06
fcbkevin
fcbkevin is offline
Citaat:
Je weet dat je te maken hebt met de parabool y=4-x². Dit is de grafiek van een tweedegraadsfunctie f, gedefinieerd door f(x)=4-x². Stel de raaklijn aan de grafiek van f gaat door (a,f(a)). Omdat dit punt in het eerste kwadrant moet liggen geldt: a>0 en f(a)>0. Omdat de raaklijn door (a,f(a)) gaat weet je dat f'(a) de richtingscoëfficiënt van de raaklijn is en kun je dus de vergelijking van de raaklijn opstellen. Stel dat deze raaklijn de vergelijking y=mx+n heeft, dan geeft mx+n=0 de waarde voor het snijpunt met de X-as en (0,n) is dan het snijpunt met de Y-as. De raaklijn sluit nu samen met de 2 coördinaatassen een driehoek in. Omdat je weet waar de raaklijn de coördinaatassen snijdt weet je ook wat de afmetingen van de zijden van de driehoek zijn, en kun je dus de oppervlakte van de driehoek berekenen.
al bedankt voor uw reactie, ik kan uw redenering goed volgen maar hoe vul ik dan al die onbekenden in?
Met citaat reageren
Oud 28-05-2009, 12:54
Uitleg
de richtingscoëfficiënt van je raaklijn moet gelijk zijn aan de richtingscoëfficiënt van je parabool in dat punt (anders is het geen raaklijn). In mathfreak's woorden: f '(a)=m. Verder weet je dat de raaklijn door het punt (a,b) van je parabool moet gaan (wederom anders is het geen raaklijn). Dit levert je de vergelijking b=m*a+n. Aangezien m inmiddels bekend is is n de enige onbekende en kun je deze dus oplossen. Zo kun je in principe voor alle raaklijnen samenstellen. Je wilt echter die raaklijn met het kleinste oppervlakte van de driehoek die de raaklijn samen met de coördinaatassen snijdt. Je wilt dus ten eerste de snijpunten met de coördinaatassen weten. y=mx+n snijdt de x-as bij y=0 (dus mx+n=0 oftwel x=-n/m) en snijdt de y-as bij x=0 (dus y=n). We hebben nu dus de snijpunten (-n/m,0) en (0,n). Het oppervlak is minimaal als het product van deze twee minimaal is. (Dit is immers 2 keer de oppervlakte van de driehoek en de factor 2 maakt voor minimaliseren niets uit). Je wilt nu dus -n/m*n=-n^2/m minimaliseren. Hier kun je dan n en m invullen als functie van bijvoorbeeld je willekeurige x-coordinaat van het raakpunt a. Je krijgt dan een functie in a g(a). Door deze functie dan te minimaliseren met als eis a>0 krijg je een a. Het gezochte punt is nu (a,f(a)).
Met citaat reageren
Oud 28-05-2009, 13:46
ILUsion
Avatar van ILUsion
ILUsion is offline
Bij dergelijk probleem begin ik meestal met uitdrukken wat je wilt minimaliseren/maximaliseren, en dat is een oppervlakte. Dat oppervlakte is afgesneden door 2 assen, dus als je de afgesneden stukken x0 en y0 noemt, krijg je al een uitdrukking die je kan afleiden. Van beide punten weet je ook dat ze op eenzelfde rechte liggen die bovendien de raaklijn is aan je parabool. En van die raaklijn weet je 4 dingen: hij raakt aan de parabool (richting), hij gaat door (0,y0), (x0,0) en (x,y) dat op de parabool ligt. Zoals je wel weet, is een rechte bepaald met 2 gegevens (2 punten, of een punt en een richting). Vermits je de parabool hebt, en dus ook de raaklijn, kan je x0 en y0 bepalen in functie van x (vermits je weet dat y=4-x²).

Hoe dat exact moet: je bepaalt eerst algemeen de vergelijking van je raaklijn:
(yrl-yp) = m(xp) * (xrl-xp)

Hierin zijn de indices RL voor de raaklijn, P voor parabool en m(xp) is de afgeleide van de parabool in het punt xp. Daarin moet je dus nog de afgeleide uitwerken en je kan ook yp = 4 - x²p invullen. Door nu yrl eens 0 te stellen, bepaal je xrl = x0 (en analoog voor xrl). Vermits je dan uitdrukkingen hebt voor x0 en y0, kan je berekenen wat het oppervlakte is en dat kan je afleiden naar xp. De verdere uitwerking zal je normaal zelf wel vinden :-)

In bijlage staat wat Matlab-code met de berekeningen (ik heb ze voor de rest manueel gemaakt), maar uiteindelijk kom ik geen minimum uit en natuurlijk ook wat grafiekjes, waarop je ziet dat het oppervlakte wel afneemt, maar geen echt minimum bereikt (tenzij je naar een gebonden minimum zoekt, dan kan je zeggen dat je op x = 2 een minimum hebt, maar dat vind ik niet echt een mooie oplossing, omdat je juist daar overgaat van kwadrant).

Dus ofwel klopt er iets niet aan je opgave, aan mijn uitwerking, ofwel moet je gewoon maar aannemen dat je op x=2 het beste af bent (maar zeker voor een opgave in het middelbaar vind ik dat een zware anti-climax).
Bijgevoegde afbeelding(e)
Bestandstype: png grafiek.png (7.7 KB, 63x gelezen)
Bijgevoegde bestanden
Bestandstype: txt minimal.txt (399 Bytes, 80x gelezen)
__________________
vaknar staden långsamt och jag är full igen (Kent - Columbus)
Met citaat reageren
Advertentie
Reageren


Regels voor berichten
Je mag geen nieuwe topics starten
Je mag niet reageren op berichten
Je mag geen bijlagen versturen
Je mag niet je berichten bewerken

BB code is Aan
Smileys zijn Aan
[IMG]-code is Aan
HTML-code is Uit

Spring naar


Alle tijden zijn GMT +1. Het is nu 03:02.